Topic:Dense Object Detection
What is Dense Object Detection? Dense object detection is the process of detecting and localizing objects in images with dense annotations.
Papers and Code
Sep 19, 2025
Abstract:The ability to interpret and comprehend a 3D scene is essential for many vision and robotics systems. In numerous applications, this involves 3D object detection, i.e.~identifying the location and dimensions of objects belonging to a specific category, typically represented as bounding boxes. This has traditionally been solved by training to detect a fixed set of categories, which limits its use. In this work, we investigate open-vocabulary 3D object detection in the challenging yet practical sparse-view setting, where only a limited number of posed RGB images are available as input. Our approach is training-free, relying on pre-trained, off-the-shelf 2D foundation models instead of employing computationally expensive 3D feature fusion or requiring 3D-specific learning. By lifting 2D detections and directly optimizing 3D proposals for featuremetric consistency across views, we fully leverage the extensive training data available in 2D compared to 3D. Through standard benchmarks, we demonstrate that this simple pipeline establishes a powerful baseline, performing competitively with state-of-the-art techniques in densely sampled scenarios while significantly outperforming them in the sparse-view setting.
* ICCV 2025; OpenSUN3D Workshop; Camera ready version
Via

Sep 17, 2025
Abstract:We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a knowledge distillation approach that transfers region-level multimodal semantics from a large vision-language teacher (e.g., LLaVa) into a lightweight vision-only object detector student (e.g., YOLO). A translation module maps student features into a joint space, where the training of the student and translator is guided by a dual-objective loss that enforces both local alignment and global relational consistency. Unlike prior approaches focused on dense or global alignment, MOCHA operates at the object level, enabling efficient transfer of semantics without modifying the teacher or requiring textual input at inference. We validate our method across four personalized detection benchmarks under few-shot regimes. Results show consistent gains over baselines, with a +10.1 average score improvement. Despite its compact architecture, MOCHA reaches performance on par with larger multimodal models, proving its suitability for real-world deployment.
Via

Sep 11, 2025
Abstract:Object detection in unmanned aerial vehicle (UAV) imagery presents significant challenges. Issues such as densely packed small objects, scale variations, and occlusion are commonplace. This paper introduces RT-DETR++, which enhances the encoder component of the RT-DETR model. Our improvements focus on two key aspects. First, we introduce a channel-gated attention-based upsampling/downsampling (AU/AD) mechanism. This dual-path system minimizes errors and preserves details during feature layer propagation. Second, we incorporate CSP-PAC during feature fusion. This technique employs parallel hollow convolutions to process local and contextual information within the same layer, facilitating the integration of multi-scale features. Evaluation demonstrates that our novel neck design achieves superior performance in detecting small and densely packed objects. The model maintains sufficient speed for real-time detection without increasing computational complexity. This study provides an effective approach for feature encoding design in real-time detection systems.
Via

Sep 09, 2025
Abstract:Annotating 3D data remains a costly bottleneck for 3D object detection, motivating the development of weakly supervised annotation methods that rely on more accessible 2D box annotations. However, relying solely on 2D boxes introduces projection ambiguities since a single 2D box can correspond to multiple valid 3D poses. Furthermore, partial object visibility under a single viewpoint setting makes accurate 3D box estimation difficult. We propose MVAT, a novel framework that leverages temporal multi-view present in sequential data to address these challenges. Our approach aggregates object-centric point clouds across time to build 3D object representations as dense and complete as possible. A Teacher-Student distillation paradigm is employed: The Teacher network learns from single viewpoints but targets are derived from temporally aggregated static objects. Then the Teacher generates high quality pseudo-labels that the Student learns to predict from a single viewpoint for both static and moving objects. The whole framework incorporates a multi-view 2D projection loss to enforce consistency between predicted 3D boxes and all available 2D annotations. Experiments on the nuScenes and Waymo Open datasets demonstrate that MVAT achieves state-of-the-art performance for weakly supervised 3D object detection, significantly narrowing the gap with fully supervised methods without requiring any 3D box annotations. % \footnote{Code available upon acceptance} Our code is available in our public repository (\href{https://github.com/CEA-LIST/MVAT}{code}).
* Accepted at WACV 2026
Via

Sep 09, 2025
Abstract:Enabling robots to grasp objects specified through natural language is essential for effective human-robot interaction, yet it remains a significant challenge. Existing approaches often struggle with open-form language expressions and typically assume unambiguous target objects without duplicates. Moreover, they frequently rely on costly, dense pixel-wise annotations for both object grounding and grasp configuration. We present Attribute-based Object Grounding and Robotic Grasping (OGRG), a novel framework that interprets open-form language expressions and performs spatial reasoning to ground target objects and predict planar grasp poses, even in scenes containing duplicated object instances. We investigate OGRG in two settings: (1) Referring Grasp Synthesis (RGS) under pixel-wise full supervision, and (2) Referring Grasp Affordance (RGA) using weakly supervised learning with only single-pixel grasp annotations. Key contributions include a bi-directional vision-language fusion module and the integration of depth information to enhance geometric reasoning, improving both grounding and grasping performance. Experiment results show that OGRG outperforms strong baselines in tabletop scenes with diverse spatial language instructions. In RGS, it operates at 17.59 FPS on a single NVIDIA RTX 2080 Ti GPU, enabling potential use in closed-loop or multi-object sequential grasping, while delivering superior grounding and grasp prediction accuracy compared to all the baselines considered. Under the weakly supervised RGA setting, OGRG also surpasses baseline grasp-success rates in both simulation and real-robot trials, underscoring the effectiveness of its spatial reasoning design. Project page: https://z.umn.edu/ogrg
* Accepted to 2025 IEEE-RAS 24th International Conference on Humanoid
Robots
Via

Sep 05, 2025
Abstract:Fast and accurate object perception in low-light traffic scenes has attracted increasing attention. However, due to severe illumination degradation and the lack of reliable visual cues, existing perception models and methods struggle to quickly adapt to and accurately predict in low-light environments. Moreover, there is the absence of available large-scale benchmark specifically focused on low-light traffic scenes. To bridge this gap, we introduce a physically grounded illumination degradation method tailored to real-world low-light settings and construct Dark-traffic, the largest densely annotated dataset to date for low-light traffic scenes, supporting object detection, instance segmentation, and optical flow estimation. We further propose the Separable Learning Vision Model (SLVM), a biologically inspired framework designed to enhance perception under adverse lighting. SLVM integrates four key components: a light-adaptive pupillary mechanism for illumination-sensitive feature extraction, a feature-level separable learning strategy for efficient representation, task-specific decoupled branches for multi-task separable learning, and a spatial misalignment-aware fusion module for precise multi-feature alignment. Extensive experiments demonstrate that SLVM achieves state-of-the-art performance with reduced computational overhead. Notably, it outperforms RT-DETR by 11.2 percentage points in detection, YOLOv12 by 6.1 percentage points in instance segmentation, and reduces endpoint error (EPE) of baseline by 12.37% on Dark-traffic. On the LIS benchmark, the end-to-end trained SLVM surpasses Swin Transformer+EnlightenGAN and ConvNeXt-T+EnlightenGAN by an average of 11 percentage points across key metrics, and exceeds Mask RCNN (with light enhancement) by 3.1 percentage points. The Dark-traffic dataset and complete code is released at https://github.com/alanli1997/slvm.
Via

Aug 27, 2025
Abstract:Self-supervised learning (SSL) has emerged as a powerful technique for learning visual representations. While recent SSL approaches achieve strong results in global image understanding, they are limited in capturing the structured representation in scenes. In this work, we propose a self-supervised approach that progressively builds structured visual representations by combining semantic grouping, instance level separation, and hierarchical structuring. Our approach, based on a novel ProtoScale module, captures visual elements across multiple spatial scales. Unlike common strategies like DINO that rely on random cropping and global embeddings, we preserve full scene context across augmented views to improve performance in dense prediction tasks. We validate our method on downstream object detection tasks using a combined subset of multiple datasets (COCO and UA-DETRAC). Experimental results show that our method learns object centric representations that enhance supervised object detection and outperform the state-of-the-art methods, even when trained with limited annotated data and fewer fine-tuning epochs.
Via

Aug 24, 2025
Abstract:Weakly-Supervised Change Detection (WSCD) aims to distinguish specific object changes (e.g., objects appearing or disappearing) from background variations (e.g., environmental changes due to light, weather, or seasonal shifts) in paired satellite images, relying only on paired image (i.e., image-level) classification labels. This technique significantly reduces the need for dense annotations required in fully-supervised change detection. However, as image-level supervision only indicates whether objects have changed in a scene, WSCD methods often misclassify background variations as object changes, especially in complex remote-sensing scenarios. In this work, we propose an Adversarial Class Prompting (AdvCP) method to address this co-occurring noise problem, including two phases: a) Adversarial Prompt Mining: After each training iteration, we introduce adversarial prompting perturbations, using incorrect one-hot image-level labels to activate erroneous feature mappings. This process reveals co-occurring adversarial samples under weak supervision, namely background variation features that are likely to be misclassified as object changes. b) Adversarial Sample Rectification: We integrate these adversarially prompt-activated pixel samples into training by constructing an online global prototype. This prototype is built from an exponentially weighted moving average of the current batch and all historical training data. Our AdvCP can be seamlessly integrated into current WSCD methods without adding additional inference cost. Experiments on ConvNet, Transformer, and Segment Anything Model (SAM)-based baselines demonstrate significant performance enhancements. Furthermore, we demonstrate the generalizability of AdvCP to other multi-class weakly-supervised dense prediction scenarios. Code is available at https://github.com/zhenghuizhao/AdvCP
Via

Aug 28, 2025
Abstract:Most visible and infrared image fusion (VIF) methods focus primarily on optimizing fused image quality. Recent studies have begun incorporating downstream tasks, such as semantic segmentation and object detection, to provide semantic guidance for VIF. However, semantic segmentation requires extensive annotations, while object detection, despite reducing annotation efforts compared with segmentation, faces challenges in highly crowded scenes due to overlapping bounding boxes and occlusion. Moreover, although RGB-T crowd counting has gained increasing attention in recent years, no studies have integrated VIF and crowd counting into a unified framework. To address these challenges, we propose FusionCounting, a novel multi-task learning framework that integrates crowd counting into the VIF process. Crowd counting provides a direct quantitative measure of population density with minimal annotation, making it particularly suitable for dense scenes. Our framework leverages both input images and population density information in a mutually beneficial multi-task design. To accelerate convergence and balance tasks contributions, we introduce a dynamic loss function weighting strategy. Furthermore, we incorporate adversarial training to enhance the robustness of both VIF and crowd counting, improving the model's stability and resilience to adversarial attacks. Experimental results on public datasets demonstrate that FusionCounting not only enhances image fusion quality but also achieves superior crowd counting performance.
* 11 pages, 9 figures
Via

Aug 20, 2025
Abstract:Ensuring safety in autonomous driving is a complex challenge requiring handling unknown objects and unforeseen driving scenarios. We develop multiscale video transformers capable of detecting unknown objects using only motion cues. Video semantic and panoptic segmentation often relies on known classes seen during training, overlooking novel categories. Recent visual grounding with large language models is computationally expensive, especially for pixel-level output. We propose an efficient video transformer trained end-to-end for class-agnostic segmentation without optical flow. Our method uses multi-stage multiscale query-memory decoding and a scale-specific random drop-token to ensure efficiency and accuracy, maintaining detailed spatiotemporal features with a shared, learnable memory module. Unlike conventional decoders that compress features, our memory-centric design preserves high-resolution information at multiple scales. We evaluate on DAVIS'16, KITTI, and Cityscapes. Our method consistently outperforms multiscale baselines while being efficient in GPU memory and run-time, demonstrating a promising direction for real-time, robust dense prediction in safety-critical robotics.
* 6 pages, 2 figures, 1 table
Via
