Topic:Dense Object Detection
What is Dense Object Detection? Dense object detection is the process of detecting and localizing objects in images with dense annotations.
Papers and Code
Jul 18, 2025
Abstract:Multi-view multi-object association is a fundamental step in 3D reconstruction pipelines, enabling consistent grouping of object instances across multiple camera views. Existing methods often rely on appearance features or geometric constraints such as epipolar consistency. However, these approaches can fail when objects are visually indistinguishable or observations are corrupted by noise. We propose C-DOG, a training-free framework that serves as an intermediate module bridging object detection (or pose estimation) and 3D reconstruction, without relying on visual features. It combines connected delta-overlap graph modeling with epipolar geometry to robustly associate detections across views. Each 2D observation is represented as a graph node, with edges weighted by epipolar consistency. A delta-neighbor-overlap clustering step identifies strongly consistent groups while tolerating noise and partial connectivity. To further improve robustness, we incorporate Interquartile Range (IQR)-based filtering and a 3D back-projection error criterion to eliminate inconsistent observations. Extensive experiments on synthetic benchmarks demonstrate that C-DOG outperforms geometry-based baselines and remains robust under challenging conditions, including high object density, without visual features, and limited camera overlap, making it well-suited for scalable 3D reconstruction in real-world scenarios.
Via

Jul 17, 2025
Abstract:Detecting tiny objects in remote sensing (RS) imagery has been a long-standing challenge due to their extremely limited spatial information, weak feature representations, and dense distributions across complex backgrounds. Despite numerous efforts devoted, mainstream detectors still underperform in such scenarios. To bridge this gap, we introduce RS-TinyNet, a multi-stage feature fusion and enhancement model explicitly tailored for RS tiny object detection in various RS scenarios. RS-TinyNet comes with two novel designs: tiny object saliency modeling and feature integrity reconstruction. Guided by these principles, we design three step-wise feature enhancement modules. Among them, the multi-dimensional collaborative attention (MDCA) module employs multi-dimensional attention to enhance the saliency of tiny objects. Additionally, the auxiliary reversible branch (ARB) and a progressive fusion detection head (PFDH) module are introduced to preserve information flow and fuse multi-level features to bridge semantic gaps and retain structural detail. Comprehensive experiments on public RS dataset AI-TOD show that our RS-TinyNet surpasses existing state-of-the-art (SOTA) detectors by 4.0% AP and 6.5% AP75. Evaluations on DIOR benchmark dataset further validate its superior detection performance in diverse RS scenarios. These results demonstrate that the proposed multi-stage feature fusion strategy offers an effective and practical solution for tiny object detection in complex RS environments.
Via

Jul 17, 2025
Abstract:High-resolution 3D point clouds are highly effective for detecting subtle structural anomalies in industrial inspection. However, their dense and irregular nature imposes significant challenges, including high computational cost, sensitivity to spatial misalignment, and difficulty in capturing localized structural differences. This paper introduces a registration-based anomaly detection framework that combines multi-prototype alignment with cluster-wise discrepancy analysis to enable precise 3D anomaly localization. Specifically, each test sample is first registered to multiple normal prototypes to enable direct structural comparison. To evaluate anomalies at a local level, clustering is performed over the point cloud, and similarity is computed between features from the test sample and the prototypes within each cluster. Rather than selecting cluster centroids randomly, a keypoint-guided strategy is employed, where geometrically informative points are chosen as centroids. This ensures that clusters are centered on feature-rich regions, enabling more meaningful and stable distance-based comparisons. Extensive experiments on the Real3D-AD benchmark demonstrate that the proposed method achieves state-of-the-art performance in both object-level and point-level anomaly detection, even using only raw features.
Via

Jul 16, 2025
Abstract:Tracking small, agile multi-objects (SMOT), such as birds, from an Unmanned Aerial Vehicle (UAV) perspective is a highly challenging computer vision task. The difficulty stems from three main sources: the extreme scarcity of target appearance features, the complex motion entanglement caused by the combined dynamics of the camera and the targets themselves, and the frequent occlusions and identity ambiguity arising from dense flocking behavior. This paper details our championship-winning solution in the MVA 2025 "Finding Birds" Small Multi-Object Tracking Challenge (SMOT4SB), which adopts the tracking-by-detection paradigm with targeted innovations at both the detection and association levels. On the detection side, we propose a systematic training enhancement framework named \textbf{SliceTrain}. This framework, through the synergy of 'deterministic full-coverage slicing' and 'slice-level stochastic augmentation, effectively addresses the problem of insufficient learning for small objects in high-resolution image training. On the tracking side, we designed a robust tracker that is completely independent of appearance information. By integrating a \textbf{motion direction maintenance (EMA)} mechanism and an \textbf{adaptive similarity metric} combining \textbf{bounding box expansion and distance penalty} into the OC-SORT framework, our tracker can stably handle irregular motion and maintain target identities. Our method achieves state-of-the-art performance on the SMOT4SB public test set, reaching an SO-HOTA score of \textbf{55.205}, which fully validates the effectiveness and advancement of our framework in solving complex real-world SMOT problems. The source code will be made available at https://github.com/Salvatore-Love/YOLOv8-SMOT.
Via

Jul 16, 2025
Abstract:Accurate mapping of individual trees is an important component for precision agriculture in orchards, as it allows autonomous robots to perform tasks like targeted operations or individual tree monitoring. However, creating these maps is challenging because GPS signals are often unreliable under dense tree canopies. Furthermore, standard Simultaneous Localization and Mapping (SLAM) approaches struggle in orchards because the repetitive appearance of trees can confuse the system, leading to mapping errors. To address this, we introduce Tree-SLAM, a semantic SLAM approach tailored for creating maps of individual trees in orchards. Utilizing RGB-D images, our method detects tree trunks with an instance segmentation model, estimates their location and re-identifies them using a cascade-graph-based data association algorithm. These re-identified trunks serve as landmarks in a factor graph framework that integrates noisy GPS signals, odometry, and trunk observations. The system produces maps of individual trees with a geo-localization error as low as 18 cm, which is less than 20\% of the planting distance. The proposed method was validated on diverse datasets from apple and pear orchards across different seasons, demonstrating high mapping accuracy and robustness in scenarios with unreliable GPS signals.
* Paper submitted to Smart Agricultural Technology
Via

Jul 16, 2025
Abstract:Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at \href{https://github.com/Linwei-Chen/FDAM}{https://github.com/Linwei-Chen/FDAM}.
* Accepted by ICCV 2025
Via

Jun 25, 2025
Abstract:Recently, dense video captioning has made attractive progress in detecting and captioning all events in a long untrimmed video. Despite promising results were achieved, most existing methods do not sufficiently explore the scene evolution within an event temporal proposal for captioning, and therefore perform less satisfactorily when the scenes and objects change over a relatively long proposal. To address this problem, we propose a graph-based partition-and-summarization (GPaS) framework for dense video captioning within two stages. For the ``partition" stage, a whole event proposal is split into short video segments for captioning at a finer level. For the ``summarization" stage, the generated sentences carrying rich description information for each segment are summarized into one sentence to describe the whole event. We particularly focus on the ``summarization" stage, and propose a framework that effectively exploits the relationship between semantic words for summarization. We achieve this goal by treating semantic words as nodes in a graph and learning their interactions by coupling Graph Convolutional Network (GCN) and Long Short Term Memory (LSTM), with the aid of visual cues. Two schemes of GCN-LSTM Interaction (GLI) modules are proposed for seamless integration of GCN and LSTM. The effectiveness of our approach is demonstrated via an extensive comparison with the state-of-the-arts methods on the two benchmarks ActivityNet Captions dataset and YouCook II dataset.
* 12 pages
Via

Jun 18, 2025
Abstract:Open-vocabulary 3D object detection has gained significant interest due to its critical applications in autonomous driving and embodied AI. Existing detection methods, whether offline or online, typically rely on dense point cloud reconstruction, which imposes substantial computational overhead and memory constraints, hindering real-time deployment in downstream tasks. To address this, we propose a novel reconstruction-free online framework tailored for memory-efficient and real-time 3D detection. Specifically, given streaming posed RGB-D video input, we leverage Cubify Anything as a pre-trained visual foundation model (VFM) for single-view 3D object detection by bounding boxes, coupled with CLIP to capture open-vocabulary semantics of detected objects. To fuse all detected bounding boxes across different views into a unified one, we employ an association module for correspondences of multi-views and an optimization module to fuse the 3D bounding boxes of the same instance predicted in multi-views. The association module utilizes 3D Non-Maximum Suppression (NMS) and a box correspondence matching module, while the optimization module uses an IoU-guided efficient random optimization technique based on particle filtering to enforce multi-view consistency of the 3D bounding boxes while minimizing computational complexity. Extensive experiments on ScanNetV2 and CA-1M datasets demonstrate that our method achieves state-of-the-art performance among online methods. Benefiting from this novel reconstruction-free paradigm for 3D object detection, our method exhibits great generalization abilities in various scenarios, enabling real-time perception even in environments exceeding 1000 square meters.
* 11 pages, 6 figures
Via

Jun 16, 2025
Abstract:Multi-object tracking (MOT) is a core task in computer vision that involves detecting objects in video frames and associating them across time. The rise of deep learning has significantly advanced MOT, particularly within the tracking-by-detection paradigm, which remains the dominant approach. Advancements in modern deep learning-based methods accelerated in 2022 with the introduction of ByteTrack for tracking-by-detection and MOTR for end-to-end tracking. Our survey provides an in-depth analysis of deep learning-based MOT methods, systematically categorizing tracking-by-detection approaches into five groups: joint detection and embedding, heuristic-based, motion-based, affinity learning, and offline methods. In addition, we examine end-to-end tracking methods and compare them with existing alternative approaches. We evaluate the performance of recent trackers across multiple benchmarks and specifically assess their generality by comparing results across different domains. Our findings indicate that heuristic-based methods achieve state-of-the-art results on densely populated datasets with linear object motion, while deep learning-based association methods, in both tracking-by-detection and end-to-end approaches, excel in scenarios with complex motion patterns.
* 39 pages
Via

Jun 05, 2025
Abstract:3D semantic occupancy prediction aims to reconstruct the 3D geometry and semantics of the surrounding environment. With dense voxel labels, prior works typically formulate it as a dense segmentation task, independently classifying each voxel. However, this paradigm neglects critical instance-centric discriminability, leading to instance-level incompleteness and adjacent ambiguities. To address this, we highlight a free lunch of occupancy labels: the voxel-level class label implicitly provides insight at the instance level, which is overlooked by the community. Motivated by this observation, we first introduce a training-free Voxel-to-Instance (VoxNT) trick: a simple yet effective method that freely converts voxel-level class labels into instance-level offset labels. Building on this, we further propose VoxDet, an instance-centric framework that reformulates the voxel-level occupancy prediction as dense object detection by decoupling it into two sub-tasks: offset regression and semantic prediction. Specifically, based on the lifted 3D volume, VoxDet first uses (a) Spatially-decoupled Voxel Encoder to generate disentangled feature volumes for the two sub-tasks, which learn task-specific spatial deformation in the densely projected tri-perceptive space. Then, we deploy (b) Task-decoupled Dense Predictor to address this task via dense detection. Here, we first regress a 4D offset field to estimate distances (6 directions) between voxels and object borders in the voxel space. The regressed offsets are then used to guide the instance-level aggregation in the classification branch, achieving instance-aware prediction. Experiments show that VoxDet can be deployed on both camera and LiDAR input, jointly achieving state-of-the-art results on both benchmarks. VoxDet is not only highly efficient, but also achieves 63.0 IoU on the SemanticKITTI test set, ranking 1st on the online leaderboard.
Via
