Dense Object Detection


Dense object detection is the process of detecting and localizing objects in images with dense annotations.

C-DOG: Training-Free Multi-View Multi-Object Association in Dense Scenes Without Visual Feature via Connected δ-Overlap Graphs

Add code
Jul 18, 2025
Viaarxiv icon

RS-TinyNet: Stage-wise Feature Fusion Network for Detecting Tiny Objects in Remote Sensing Images

Add code
Jul 17, 2025
Viaarxiv icon

3DKeyAD: High-Resolution 3D Point Cloud Anomaly Detection via Keypoint-Guided Point Clustering

Add code
Jul 17, 2025
Viaarxiv icon

YOLOv8-SMOT: An Efficient and Robust Framework for Real-Time Small Object Tracking via Slice-Assisted Training and Adaptive Association

Add code
Jul 16, 2025
Viaarxiv icon

Tree-SLAM: semantic object SLAM for efficient mapping of individual trees in orchards

Add code
Jul 16, 2025
Viaarxiv icon

Frequency-Dynamic Attention Modulation for Dense Prediction

Add code
Jul 16, 2025
Viaarxiv icon

Dense Video Captioning using Graph-based Sentence Summarization

Add code
Jun 25, 2025
Viaarxiv icon

BoxFusion: Reconstruction-Free Open-Vocabulary 3D Object Detection via Real-Time Multi-View Box Fusion

Add code
Jun 18, 2025
Viaarxiv icon

Deep Learning-Based Multi-Object Tracking: A Comprehensive Survey from Foundations to State-of-the-Art

Add code
Jun 16, 2025
Viaarxiv icon

VoxDet: Rethinking 3D Semantic Occupancy Prediction as Dense Object Detection

Add code
Jun 05, 2025
Viaarxiv icon